- несмещённая дисперсия
- Optics: non-shifted dispersion
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Несмещённая оценка — в математической статистике это точечная оценка, математическое ожидание которой равно оцениваемому параметру. Определение Пусть выборка из распределения, зависящего от параметра . Тогда оценка называется несмещённой, если … Википедия
Несмещённая оценка — оценка параметра Распределения вероятностей по наблюдённым значениям, лишённая систематической ошибки. Более точно: если оцениваемое распределение зависит от параметров θ1, θ2,..., θs, то функция θi* (x1, x2,..., xn) от результатов… … Большая советская энциклопедия
Исправленная выборочная дисперсия — Выборочная дисперсия в математической статистике это оценка теоретической дисперсии распределения на основе выборки. Различают выборочную дисперсию и несмещённую или исправленную выборочные дисперсии. Содержание 1 Определения 2 Замечание 3… … Википедия
Выборочная дисперсия — в математической статистике это оценка теоретической дисперсии распределения на основе выборки. Различают выборочную дисперсию и несмещённую, или исправленную, выборочные дисперсии. Содержание 1 Определения 2 Замечание … Википедия
Несмещенная оценка — Несмещённая оценка в математической статистике это точечная оценка, математическое ожидание которой равно оцениваемому параметру. Определение Пусть выборка из распределения, зависящего от параметра . Тогда оценка называется несмещённой, е … Википедия
СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ — один из осн. разделов матем. статистики … Физическая энциклопедия
Метод наименьших квадратов — Пример кривой, проведённой через точки, имеющие нормально распределённое отклонение от истинного значения. Запрос «МНК» перенаправляетс … Википедия
Статистические оценки — функции от результатов наблюдений, употребляемые для статистического оценивания (См. Статистическое оценивание) неизвестных параметров распределения вероятностей изучаемых случайных величин. Например, если X1,..., Xn независимые случайные … Большая советская энциклопедия
Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… … Википедия
Состоятельная оценка — статистическая оценка параметра Распределения вероятностей, обладающая тем свойством, что при увеличении числа наблюдений вероятность отклонений оценки от оцениваемого параметра на величину, превосходящую некоторое заданное число,… … Большая советская энциклопедия
Выборочное среднее — Выборочное (эмпирическое) среднее это приближение теоретического среднего распределения, основанное на выборке из него. Определение Пусть выборка из распределения вероятности, определённая на некотором вероятностном пространстве .… … Википедия